Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Ultrasonic measurement of orbital and charge degrees of freedom in $Pr_{1-x}Ca_xMnO_3$

Hirofumi Hazama¹, Terutaka Goto¹, Yuichi Nemoto¹, Yasuhide Tomioka², Atsushi Asamitsu³, Yoshinori Tokura⁴

- ¹ Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- ² Joint Research Center for Atom Technology (JRCAT), Tsukuba 305-0046, Japan
- ³ Cryogenic Center, University of Tokyo, 113-0032, Japan
- ⁴ Department of Applied Physics, University of Tokyo, 113-8656, Japan

Perovskite manganite $\Pr_{1-x} Ca_x MnO_3$ around x=0.5 shows the charge ordering at T_{co} . It was reported that the orbital degree of freedom as the $d\gamma$ -doublet $(d(3z^2-r^2),d(x^2-y^2))$ of 3d electron in Mn^{3+} ion and the charge degree of freedom as Mn^{3+} and Mn^{4+} ion are frozen simultaneously. Furthermore, $\Pr_{1-x} Ca_x MnO_3$ exhibits the colossal magnetoresistance (CMR). In order to study the interplay of the CMR of $\Pr_{1-x} Ca_x MnO_3$ to the orbital and charge degrees of freedom, we have measured the elastic constants in $\Pr_{1-x} Ca_x MnO_3(x=0.35,0.40,0.50)$. The elastic constant of $(C_{11}-C_{12})/2$ and C_{44} obviously shows softening above T_{co} for the compounds of x=0.35,0.40 and 0.50 in lowering temperature. When the concentration x of $\Pr_{1-x} Ca_x MnO_3$ approaches to x=0.5, the softening of $(C_{11}-C_{12})/2$ and C_{44} near T_{co} becomes more pronounced. This result means that the softening is caused by the charge fluctuation of x=0.5 compound with $\operatorname{Mn}^{3+}: \operatorname{Mn}^{4+}=1:1$. The softening of $(C_{11}-C_{12})/2$ and C_{44} in x=0.40 and 0.50 compounds under magnetic fields is also presented.